Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 24(2): 46, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429576

RESUMO

Cyanobacteria are oxygenic photosynthetic organisms which are found across many ecosystems, including freshwater and marine habitats. They are also found on natural and artificial surfaces. In this study, we cultured and characterise a novel cyanobacterium from the surfaces of foam microplastics of tropical coastal waters. We study the chemical ecology of this cyanobacterium, Sphaerothrix gracilis gen. et sp. nov., together with its potential to form harmful cyanobacterial blooms and bioremediation applications to combat plastic pollution. The genome of S. gracilis spanned 6.7 Mbp, with identification of antibiotic resistance, nitrogen-fixation, plastic-degrading and genes involved in harmful metabolite production. The transport of potentially harmful S. gracilis in coastal environments could have severe implications on human health and food security, especially in times of a cyanobacterial bloom.


Assuntos
Cianobactérias , Ecossistema , Humanos , Microplásticos/metabolismo , Plásticos/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Fixação de Nitrogênio
2.
Mar Environ Res ; 193: 106251, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952304

RESUMO

Microplastics are a major constituent of plastic waste and are of an increasing global concern. Although microplastics are prevalent in marine ecosystems, the characterisation of plankton communities has been largely neglected in this aspect, especially in tropical ecosystems. To better understand the role of microplastics as a carrier of harmful plankton in marine ecosystems, epiplastic plankton communities in tropical marine ecosystems were studied from beach sediments along the Johor and Singapore Straits. Complementary analysis of microscopy and high throughput sequencing of the 16S rRNA (V3-V4) and 18S (V4) rRNA regions provided evidence that the plastisphere provided an appropriate environment to host a wide range of planktonic organisms. An average of 781 OTUs were identified across the three sampling sites. The structures of plankton communities were distinct across the sampling sites and were generally dominated by dinoflagellates, fungi and chlorophytes. We demonstrate that marine microplastics serve as microhabitats that are a host to harmful phytoplankton species, including viable resting cysts of dinoflagellates. Furthermore, plastics isolated from the location with the greatest anthropogenic influence demonstrated the greatest plankton diversity. This study presents evidence of diverse toxic plankton species present on the plastisphere and highlights its importance as a vector of the transport of harmful opportunistic species in relation to anthropogenic influence, in the marine environment.


Assuntos
Ecossistema , Plâncton , Microplásticos , Plásticos , RNA Ribossômico 16S/genética
3.
Mar Pollut Bull ; 193: 115182, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37352797

RESUMO

Plankton seasonality in tropical coastal waters is becoming more apparent as a result of monsoon-driven changes in environmental conditions, but research on the monsoonal variation of microplastics (MP) is still limited. We examined the monsoonal variation of MP in the water column and their ingestion by zooplankton in Sepanggar Bay, Sabah, Malaysia. MP concentrations were significantly higher during the Southwest monsoon whereas MP ingestions showed no monsoonal difference across major zooplankton taxa. Canonical Correspondence Analysis (CCA) and Generalized Additive Models (GAM) indicate that MP concentrations were driven by changes in rainfall and salinity while MP bioavailability to zooplankton was consistent regardless of monsoon. MP ingestion increased progressively up the planktonic food chain, and bioavailability of fibers and small-sized MP of high-density polymers to zooplankton was proportionately higher. Distinct changes in the MP concentration relative to the monsoons provide new insights into the seasonal variation of MP in tropical coastal ecosystems.


Assuntos
Poluentes Químicos da Água , Zooplâncton , Animais , Microplásticos , Plásticos/análise , Ecossistema , Malásia , Disponibilidade Biológica , Plâncton , Ingestão de Alimentos , Monitoramento Ambiental , Poluentes Químicos da Água/análise
4.
Trop Life Sci Res ; 34(1): 99-120, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37065805

RESUMO

Species of the genus Chattonella (Raphidophyceae) are a group of marine protists that are commonly found in coastal waters. Some are known as harmful microalgae that form noxious blooms and cause massive fish mortality in finfish aquaculture. In Malaysia, blooms of Chattonella have been recorded since the 1980s in the Johor Strait. In this study, two strains of Chattonella were established from the strait, and morphological examination revealed characteristics resembling Chattonella subsalsa. The molecular characterization further confirmed the species' identity as C. subsalsa. To precisely detect the cells of C. subsalsa in the environment, a whole-cell fluorescence in-situ hybridisation (FISH) assay was developed. The species-specific oligonucleotide probes were designed in silico based on the nucleotide sequences of the large subunit (LSU) and internal transcribed spacer 2 (ITS2) of the ribosomal DNA (rDNA). The best candidate signature regions in the LSU-rRNA and ITS2-rDNA were selected based on hybridisation efficiency and probe parameters. The probes were synthesised as biotinylated probes and tested by tyramide signal amplification with FISH (FISH-TSA). The results showed the specificity of the probes toward the target cells. FISH-TSA has been proven to be a potential tool in the detection of harmful algae in the environment and could be applied to the harmful algal monitoring program.


Spesies genus Chattonella (Raphidophyceae) ialah sekumpulan protista marin yang biasa ditemui di perairan laut pantai. Sesetengahnya dikenali sebagai mikroalga berbahaya yang membentuk ledakan alga berbahaya dan menyebabkan kematian ikan secara besar-besaran dalam akuakultur ikan sirip. Di Malaysia, ledakan alga Chattonella telah direkodkan sejak tahun 1980-an di Selat Johor. Dalam kajian ini, dua strain Chattonella telah didirikan dari selat, dan pemeriksaan morfologi mendedahkan ciri-ciri yang menyerupai Chattonella subsalsa. Pencirian molekul seterusnya mengesahkan identiti spesies sebagai C. subsalsa. Untuk mengesan dengan tepat sel-sel C. subsalsa di dalam persekitaran, ujian penghibridan in-situ berpendarfluor (FISH) ke atas sel keseluruhan telah dibangunkan. Prob oligonukleotida spesies telah direka secara spesifik secara siliko berdasarkan jujukan nukleotida subunit besar (LSU) dan spacer transkripsi dalaman 2 (ITS2) gen DNA ribosom (rDNA). Calon terbaik kawasan tanda dalam LSU-rRNA dan ITS2-rDNA telah dipilih berdasarkan kecekapan penghibridan dan parameter prob. Prob telah disintesis sebagai prob biotinilasi dan diuji dengan penguatan isyarat tyramide dengan FISH (FISH-TSA). Keputusan menunjukkan kekhususan prob ke atas sel sasaran. FISH-TSA telah terbukti sebagai alat yang berpotensi dalam pengesanan alga berbahaya di alam sekitar dan boleh digunakan untuk program pemantauan alga berbahaya.

5.
Mol Ecol ; 32(23): 6696-6709, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36799015

RESUMO

The spread of nonindigenous species by shipping is a large and growing global problem that harms coastal ecosystems and economies and may blur coastal biogeographical patterns. This study coupled eukaryotic environmental DNA (eDNA) metabarcoding with dissimilarity regression to test the hypothesis that ship-borne species spread homogenizes port communities. We first collected and metabarcoded water samples from ports in Europe, Asia, Australia and the Americas. We then calculated community dissimilarities between port pairs and tested for effects of environmental dissimilarity, biogeographical region and four alternative measures of ship-borne species transport risk. We predicted that higher shipping between ports would decrease community dissimilarity, that the effect of shipping would be small compared to that of environment dissimilarity and shared biogeography, and that more complex shipping risk metrics (which account for ballast water and stepping-stone spread) would perform better. Consistent with our hypotheses, community dissimilarities increased significantly with environmental dissimilarity and, to a lesser extent, decreased with ship-borne species transport risks, particularly if the ports had similar environments and stepping-stone risks were considered. Unexpectedly, we found no clear effect of shared biogeography, and that risk metrics incorporating estimates of ballast discharge did not offer more explanatory power than simpler traffic-based risks. Overall, we found that shipping homogenizes eukaryotic communities between ports in predictable ways, which could inform improvements in invasive species policy and management. We demonstrated the usefulness of eDNA metabarcoding and dissimilarity regression for disentangling the drivers of large-scale biodiversity patterns. We conclude by outlining logistical considerations and recommendations for future studies using this approach.


Assuntos
DNA Ambiental , Ecossistema , DNA Ambiental/genética , Navios , Biodiversidade , Água , Monitoramento Ambiental , Código de Barras de DNA Taxonômico
6.
Harmful Algae ; 118: 102322, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36195418

RESUMO

Fisheries damage caused by Chattonella red tide has been recorded in Southeast Asia. Molecular studies have clarified the presence of two species, Chattonella marina complex and Chattonella subsalsa in the region, unlike East Asia that had only C. marina complex. To elucidate the phylogeography of Chattonella in Asia, further phylogenetic and morphological examinations were carried out with 33 additional culture strains, including the strains isolated during a bloom of Chattonella sp. (up to 142 cells mL-1) that was associated with a wild fish mortality along the northeastern coast of Peninsular Malaysia in 2016, and those from Yellow Sea, where the Chattonella genotypes have not been determined. LSU rDNA and ITS2 trees showed five intrageneric clades in the genus Chattonella, which were clades I and II (C. subsalsa), clade III (C. marina complex) and two new clades, namely clade IV from Thailand and Malaysia, and clade V from Peninsular Malaysia. The positions of the two new clades were different in LSU rDNA and ITS2 trees. LSU rDNA divergences of clades IV and V from the other clades were ≥ 4.01% and ≥ 5.70%, while their ITS2 divergences were ≥ 7.44% and ≥ 16.43%, respectively. Three and five compensatory base changes (CBCs) were observed in the clades IV and V, respectively, when compared to each of their closest clade. Cells from clades IV and V showed similar morphology to C. marina complex and C. subsalsa clade II, including the presence of button-like granules on cell surface and oboe-shaped mucocysts. However, cell size, the number and shape of chloroplasts in Chattonella clades IV and V, and the non-stacked thylakoids penetrated the pyrenoid in C. subsalsa clade II, were distinctive. Based on the diagnostic chloroplast shape, we proposed the designation of clades IV and V to two new species, Chattonella tenuiplastida sp. nov. and Chattonella malayana sp. nov.


Assuntos
Estramenópilas , Animais , DNA Ribossômico , Peixes , Filogenia , Filogeografia , Estramenópilas/metabolismo
7.
Environ Sci Pollut Res Int ; 29(52): 78178-78206, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36190622

RESUMO

Moorena producens is a benthic filamentous cyanobacteria that has been widely documented for its toxicity. This cyanobacterium colonizes both temperate (37%) and tropical (63%) regions, making it a cosmopolitan cyanobacterium with a global distribution. M. producens grows across coral reefs in multiple locations but recurringly blooms in Queensland, Australia. Today, nuisance blooms of M. producens have resulted in major disruptions to recreational activities along coastal areas and are known to cause adverse effects on organism and human health upon contact or ingestion. Specifically, marine organisms such as the green turtle Chelonia mydas and hawksbill turtle Eretmochelys imbricata were fatally poisoned by M. producens after consumption of this cyanobacterium. Reports record a range of effects on human health, from pain and blistering or even death upon ingestion of contaminated seafood. Blooms of M. producens are triggered by influxes of nitrogen, phosphate and iron, from surrounding coastal runoffs or sewage effluents. Additions of these nutrients can result in an increase in growth rate by 4-16 times. Iron bioavailability also plays a crucial role in bloom formation. A total of 231 natural products from 66 groups were identified from M. producens, with the three dominant groups: malyngamides, microcolins and dolastatins. These bioactive secondary metabolites have displayed toxicities against a range of carcinoma cell lines and organisms such as brine shrimp Artemia salina and goldfish Carassius auratus. This review provides a thorough insight to the distribution, ecophysiology and toxicity of M. producens, with reports on bloom events and implications on organism and human health.


Assuntos
Produtos Biológicos , Cianobactérias , Humanos , Esgotos , Cianobactérias/metabolismo , Produtos Biológicos/metabolismo , Nitrogênio/metabolismo , Fosfatos/metabolismo , Ferro/metabolismo
8.
Harmful Algae ; 107: 102070, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34456025

RESUMO

Red tides and associated fisheries damage caused by the harmful raphidophyte Chattonella were reassessed based on the documented local records for 50 years to understand the distribution and economic impacts of the harmful species in the Western Pacific. Blooms of Chattonella with fisheries damage have been recorded in East Asia since 1969, whereas they have been only recorded in Southeast Asia since the 1980s. Occurrences of Chattonella have been documented from six Southeast Asian countries, Indonesia, Malaysia, Philippines, Singapore, Thailand and Viet Nam, with mass mortalities mainly of farmed shrimp in 1980-1990s, and farmed fish in 2000-2010s. These occurrences have been reported with the names of C. antiqua, C. marina, C. ovata, C. subsalsa and Chattonella sp., owing to the difficulty of microscopic species identification, and many were not supported with molecular data. To determine the distribution of C. marina complex and C. subsalsa in Southeast Asia, molecular phylogeny and microscopic observation were also carried out for cultures obtained from Indonesia, Malaysia, Japan, Philippines, Russia, Singapore and Thailand. The results revealed that only the genotype of C. marina complex has been detected from East Asia (China, Japan, Korea and Russia), whereas both C. marina complex (Indonesia and Malaysia) and C. subsalsa (Philippines, Singapore and Thailand) were found in Southeast Asia. Ejection of mucocysts has been recognized as a diagnostic character of C. subsalsa, but it was also observed in our cultures of C. marina isolated from Indonesia, Malaysia, Japan, and Russia. Meanwhile, the co-occurrences of the two harmful Chattonella species in Southeast Asia, which are difficult to distinguish solely based on their morphology, suggest the importance of molecular identification of Chattonella genotypes for further understanding of their distribution and negative impacts.


Assuntos
Proliferação Nociva de Algas , Estramenópilas , Animais , Sudeste Asiático , Pesqueiros , Filipinas
9.
Harmful Algae ; 107: 102077, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34456026

RESUMO

Coastal ecosystems are often subjected to anthropogenic disturbances that lead to water quality deterioration and an increase in harmful algal bloom (HAB) events. Using the next-generation molecular tool of 18S rDNA metabarcoding, we examined the community assemblages of HAB species in the Johor Strait, Malaysia between May 2018 and September 2019, covering 19 stations across the strait. The molecular operational taxonomic units (OTUs) of HAB taxa retrieved from the dataset (n = 194) revealed a much higher number of HAB taxa (26 OTUs) than before, with 12 taxa belong to new records in the strait. As revealed in the findings of this study, the diversity and community structure of HAB taxa varied significantly over time and space. The most common and abundant HAB taxa in the strait (frequency of occurrence >70%) comprised Heterosigma akashiwo, Fibrocapsa japonica, Pseudo-nitzschia pungens, Dinophysis spp., Gymnodinium catenatum, Alexandrium leei, and A. tamiyavanichii. Also, our results demonstrated that the HAB community assemblages in the strait were dependent on the interplay of environmental variables that influence by the monsoonal effects. Different HAB taxa, constitute various functional types, occupied and prevailed in different environmental niches across space and time, leading to diverse community assemblages and population density. This study adds to the current understandings of HAB dynamics and provides a robust overview of temporal-spatial changes in HAB community assemblages along the environmental gradients in a tropical eutrophic coastal ecosystem.


Assuntos
Dinoflagelados , Microalgas , Ecossistema , Proliferação Nociva de Algas , Fitoplâncton
10.
Environ Pollut ; 288: 117776, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34280748

RESUMO

Microplastic pollution is a prevalent and serious problem in marine environments. These particles have a detrimental impact on marine ecosystems. They are harmful to marine organisms and are known to be a habitat for toxic microorganisms. Marine microplastics have been identified in beach sand, the seafloor and also in marine biota. Although research investigating the presence of microplastics in various marine environments have increased across the years, studies in Southeast Asia are still relatively limited. In this paper, 36 studies on marine microplastic pollution in Southeast Asia were reviewed and discussed, focusing on microplastics in beach and benthic sediments, seawater and marine organisms. These studies have shown that the presence of fishing harbours, aquaculture farms, and tourism result in an increased abundance of microplastics. The illegal and improper disposal of waste from village settlements and factories also contribute to the high abundance of microplastics observed. Hence, it is crucial to identify the hotspots of microplastic pollution, for assessment and mitigation purposes. Future studies should aim to standardize protocols and quantification, to allow for better quantification and assessment of the levels of microplastic contamination for monitoring purposes.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Plásticos , Poluentes Químicos da Água/análise
11.
Front Bioeng Biotechnol ; 8: 562760, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344429

RESUMO

Microplastic pollution is a global issue that has a detrimental impact on food safety. In marine environments, microplastics are a threat to marine organisms, as they are often the same size range as prey and are mistaken as food. Consumption of microplastics has led to the damage of digestive organs and a reduction in growth and reproductive output. In this study, microplastic pollution was assessed across three commercially available shrimp species that were obtained from the supermarkets of Singapore. A total of 93 individuals were studied from the Pacific white leg shrimp, Litopenaeus vannamei, the Argentine red shrimp Pleoticus muelleri and the Indian white shrimp Fenneropenaeus indicus. Microplastic fibers, fragments, film and spheres were identified from the digestive tract of these organisms. Microplastic abundance ranged from 13.4 to 7050 items. F. indicus exhibited the highest number of microplastics. Microplastic film was the most abundant in L. vannamei individuals (93-97%) and spheres were the most abundant in P. muelleri (70%) and F. indicus (61%) individuals. This study demonstrates that microplastic contamination is evident in commonly consumed shrimp and highlights the role of shrimp in the trophic transfer and accumulation of microplastics in seafood. The consumption of microplastic-containing seafood is a route of exposure to humans and has implications on human health and food security. Capsule: Microplastics were examined in three shrimp species from the supermarkets of Singapore. Microplastics ranged from 13.4 to 7050 items of shrimp.

12.
Sci Rep ; 9(1): 15892, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31664048

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

13.
Harmful Algae ; 86: 10-19, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31358269

RESUMO

Lyngbya majuscula is a marine filamentous cyanobacteria belonging to the family Oscillatoriaceae. Recent phylogenetic analyses of L. majuscula have reclassified a subset of this species into various genera such as Moorea, Okeania and Dapis. From the genus Moorea, Moorea producens is a toxic invasive cyanobacterium that produces bioactive secondary metabolites that can cause severe inflammation and blistering. Despite the global distribution of M. producens, little information is available on their origin, patterns of dispersal and population structure. In this study, the spatial population structure of M. producens was investigated using near-complete 16S rRNA sequences. Analysis of the global population of M. producens by Isolation by Distance and STRUCTURE revealed two significantly distinct cosmopolitan populations that were separated by a genetic break. Lineage-specific divergence estimates of 147 cyanobacterial taxa, based on a relaxed molecular clock indicated the first global emergence of M. producens during the Mesoarchean and a subsequent global recolonization during the Mesoproterozoic period. We conclude that the genetic discontinuity between both cosmopolitan populations is attributed to refugia associated with Proterozoic glacial cycles.


Assuntos
Cianobactérias , Filogenia , Filogeografia , RNA Ribossômico 16S
14.
Anal Chim Acta ; 1066: 121-130, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31027526

RESUMO

A visual, rapid, and sensitive method for the detection of two algal metabolites, geosmin (GSM) and 2-methylisoborneol (2-MIB) using a competitive displacement technique based on molecular imprinted polymers (MIPs) and fluorescent tags was developed. In this method, fluorescent tags that bind to synthetic receptor sites of MIPs were designed and synthesised. In the presence of target analytes (geosmin and 2-methylisoborneol respectively), the tags are displaced leading to fluorescence signals. The MIPs were derived from the polymerisation of functional monomers and crosslinkers in the presence of suitable templates. Good to high binding capacities and selectivities were obtained with the MIPs. The displacement of fluorescent-tagged substrates from the respective MIPs by the target analytes enabled the quantitative detection of geosmin at concentrations as low as 0.38 µM (69 µg L-1), while the LOD for 2-methylisoborneol is 0.29 µM (48 µg L-1) without any cross-reactivity, non-specific (false-positive) binding, and matrix complications. Qualitative detection of geosmin and 2-methylisoborneol is also possible via visualisation of fluorescence using a hand held UV lamp, with LOD for geosmin and 2-methylisoborneol at 0.44 µM (80 µg L-1) and 0.35 µM (60 µg L-1), respectively. The sensitivity of the system can be improved with a pre-concentration step using the respective MIPs as a sorbent.


Assuntos
Canfanos/análise , Clorófitas/química , Fluorescência , Impressão Molecular , Naftóis/análise , Polímeros/química , Canfanos/metabolismo , Clorófitas/metabolismo , Cinética , Estrutura Molecular , Naftóis/metabolismo , Tamanho da Partícula , Polímeros/síntese química , Propriedades de Superfície
15.
Sci Total Environ ; 655: 313-320, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30471599

RESUMO

Plastic waste is a global issue of an increasing concern in aquatic ecosystems. Microplastics form a large proportion of plastic pollution in marine environments. Although microplastics are prevalent, their distribution along the coasts of tropical regions is not well studied. Microplastic pieces (1-5 mm) were collected from two distinct regions along the coastlines of Singapore, from the northern coast in the Johor Strait and the southern coast in the Singapore Strait. Microplastics were present in concentrations ranging from 9.20-59.9 particles per kg of dry sand sediment. The majority of microplastics identified were foam particles (55%) and fragments (35%). Microplastics were significantly more abundant on heavily populated beaches compared to pristine beaches. High throughput sequencing was used to profile the communities of bacteria on the surfaces of microplastic particles. The structure of the microbial communities was primarily characterised by Proteobacteria and Bacteroidetes and were distinct across sites. Hydrocarbon-degrading genera such as Erythrobacter were dominant in areas with heavy shipping and pollution. Potential pathogenic genera such as Vibrio and Pseudomonas were also identified. This study highlights the diverse bacterial assemblages present on marine microplastic surfaces and the importance of understanding the bacterial plastisphere.


Assuntos
Bactérias/classificação , Monitoramento Ambiental/métodos , Sedimentos Geológicos/microbiologia , Plásticos/análise , Clima Tropical , Poluentes Químicos da Água/análise , Bactérias/crescimento & desenvolvimento , Ecossistema , Sedimentos Geológicos/química , Microbiota , Singapura
16.
Sci Rep ; 8(1): 8843, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891968

RESUMO

Environmental DNA (eDNA) metabarcoding can greatly enhance our understanding of global biodiversity and our ability to detect rare or cryptic species. However, sampling effort must be considered when interpreting results from these surveys. We explored how sampling effort influenced biodiversity patterns and nonindigenous species (NIS) detection in an eDNA metabarcoding survey of four commercial ports. Overall, we captured sequences from 18 metazoan phyla with minimal differences in taxonomic coverage between 18 S and COI primer sets. While community dissimilarity patterns were consistent across primers and sampling effort, richness patterns were not, suggesting that richness estimates are extremely sensitive to primer choice and sampling effort. The survey detected 64 potential NIS, with COI identifying more known NIS from port checklists but 18 S identifying more operational taxonomic units shared between three or more ports that represent un-recorded potential NIS. Overall, we conclude that eDNA metabarcoding surveys can reveal global similarity patterns among ports across a broad array of taxa and can also detect potential NIS in these key habitats. However, richness estimates and species assignments require caution. Based on results of this study, we make several recommendations for port eDNA sampling design and suggest several areas for future research.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico/métodos , DNA/genética , DNA/isolamento & purificação , Meio Ambiente , Metagenômica/métodos , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , RNA Ribossômico 18S/genética
17.
J Phycol ; 54(2): 234-248, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29377161

RESUMO

Analyses of the mitochondrial cox1, the nuclear-encoded large subunit (LSU), and the internal transcribed spacer 2 (ITS2) RNA coding region of Pseudo-nitzschia revealed that the P. pseudodelicatissima complex can be phylogenetically grouped into three distinct clades (Groups I-III), while the P. delicatissima complex forms another distinct clade (Group IV) in both the LSU and ITS2 phylogenetic trees. It was elucidated that comprehensive taxon sampling (sampling of sequences), selection of appropriate target genes and outgroup, and alignment strategies influenced the phylogenetic accuracy. Based on the genetic divergence, ITS2 resulted in the most resolved trees, followed by cox1 and LSU. The morphological characters available for Pseudo-nitzschia, although limited in number, were overall in agreement with the phylogenies when mapped onto the ITS2 tree. Information on the presence/absence of a central nodule, number of rows of poroids in each stria, and of sectors dividing the poroids mapped onto the ITS2 tree revealed the evolution of the recently diverged species. The morphologically based species complexes showed evolutionary relevance in agreement with molecular phylogeny inferred from ITS2 sequence-structure data. The data set of the hypervariable region of ITS2 improved the phylogenetic inference compared to the cox1 and LSU data sets. The taxonomic status of P. cuspidata and P. pseudodelicatissima requires further elucidation.


Assuntos
Diatomáceas/classificação , Filogenia , Proteínas de Algas/análise , DNA Espaçador Ribossômico/análise , Diatomáceas/genética , Complexo IV da Cadeia de Transporte de Elétrons/análise , Genes de RNAr , RNA de Algas/análise , Análise de Sequência de DNA , Análise de Sequência de RNA
18.
Toxicon ; 48(6): 683-9, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16997341

RESUMO

The protein and total toxin of dinoflagellate Alexandrium tamarense at the exponential growth phase were studied at four N:P supply ratios=8, 16, 24 and 48 by maintaining the N concentration at 880 microM with variable P concentrations without nutrient limitation. Because A. tamarense grew well at all N:P supply ratios, they might synthesize RNA which contains high phosphorus and consequently low N:P atomic ratio of cells might be retained during exponential growth phase. Cellular protein:C ratio and toxin:C ratio depended on N:P supply ratio, suggesting that intracellular biochemical composition of A. tamarense might vary due to N:P supply conditions. These biochemical changes could not be detected by only investigations of cellular N:C atomic ratio which was independent on N:P supply ratio. Total cellular toxin contents of A. tamarense increased with increasing N:P supply ratio, indicated that total cellular toxin contents of A. tamarense might be stimulated by relative P-deficiency. In situ P concentration of the Seto Inland Sea of Japan has been reduced since 1980s the environmental regulation issued by Japanese Government, and therefore N:P supply ratio of input water from adjacent rivers has became higher than the Redfield ratio. The present study may suggest that the reduction of P supply into ambient sea water might cause A. tamarense to accumulate more toxin within the cell, in result, noxious A. tamarense would be more influential to marine organisms in coastal ecosystem.


Assuntos
Dinoflagelados/metabolismo , Toxinas Marinhas/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Dinoflagelados/química , Dinoflagelados/crescimento & desenvolvimento , Ecossistema , Toxinas Marinhas/análise , Proteínas de Protozoários/análise
19.
Toxicon ; 43(4): 407-15, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15051404

RESUMO

Nitrogen (N) supply in pulses was simulated by exposing Alexandrium tamarense which was acclimatized at low N concentration (6 microM-N) to sudden increase in concentrations of nitrate, ammonium and urea, and the variability in toxicity due to nutrient status of A. tamarense was examined. The toxin composition did not vary dramatically among the three N sources, however, ammonium induced the highest concentration of intracellular toxin, followed by urea and then nitrate. Therefore, populations utilizing high ammonium concentration could be more toxic than those growing on nitrate or urea. The toxin content was dependent on the cellular N status of nitrate grown cells only, suggesting that the competition for N in toxin production with other metabolic pathways such as growth may be different among N sources. The relationship between toxin and nutrient status is a complex interaction and it involves the redistribution of cellular N within the cells. Understanding the toxin dynamics of natural populations in relation to nutrient is essential for the mitigation of harmful dinoflagellates in a given coastal ecosystem.


Assuntos
Dinoflagelados/metabolismo , Toxinas Marinhas/toxicidade , Compostos de Nitrogênio/metabolismo , Saxitoxina/análogos & derivados , Saxitoxina/toxicidade , Animais , Carbono , Cromatografia Líquida de Alta Pressão , Dinoflagelados/química , Dinoflagelados/crescimento & desenvolvimento , Japão , Toxinas Marinhas/isolamento & purificação , Toxinas Marinhas/metabolismo , Nitratos , Compostos de Amônio Quaternário , Saxitoxina/isolamento & purificação , Saxitoxina/metabolismo , Água do Mar/análise , Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...